Ccyntec

Shunt Sensor

VSMB6918SY-0M10J, Shunt Sensor (Lead / Halogen Free)

Features / Applications :

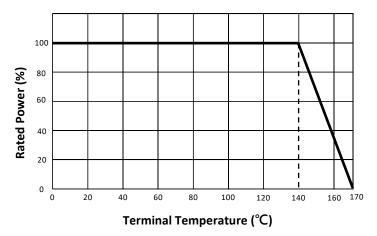
- High power rating is up to 36W
- Low inductance (< 5 nH)
- Low thermal EMF (< 3 µV/°C)
- Welding construction; Excellent long-term stability
- RoHS compliant
- Automotive applications & Current sensing for BMS
- Ni & Sn plating assists with PCB mounting and corrosion protection

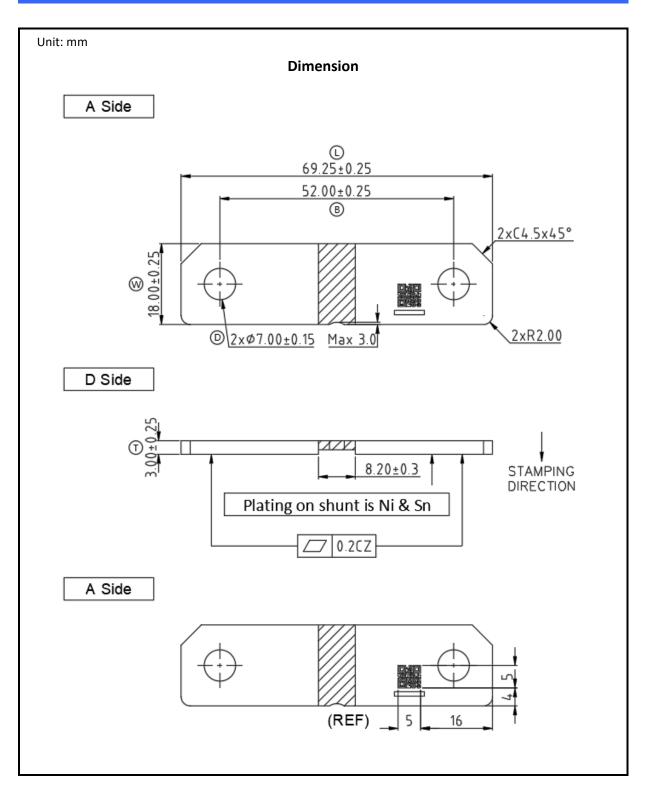
Electrical Specifications :

Characteristics	Feature
Power Rating*	36 W
Resistance Value	100 μΩ
Temperature Coefficient of Resistance	± 100 ppm/°C
Operation Temperature Range	-65°C~ +170°C
Resistance Tolerance	± 5% (J)
Maximum Working Voltage (V)	(P*R) ^{1/2}

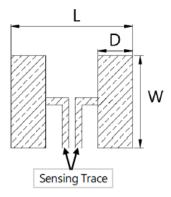
*Note :

For sensors operated at terminal temperature in excess of 140° C, the maximum load shall be derated in accordance with the following curve.




Figure 1. : Power derating curve at terminal temperature

DOCUMENT : VSMB6918SY0M10JW Page : 1 REVISION : A0



Outline Drawing :

Recommended Dimensions of the Land Pad

Resistance	Dimensions		
	L	D	w
Range	(mm)	(mm)	(mm)
100 uΩ	15.6	4.0	19.0

Type Designation :

VSME	B 6918	S	Y	-	0 M 1 0	J
(1)	(2)	(3)	(4)	-	(5)	(6)
Note	e :					
(1)	(1) Series No.					
(2)	(2) Size					
(3) Terminal type : S = Short terminal						
(4) Power Rating : Y = 36W						
(5) Resistance value : 0M10 = 100 $\mu\Omega$						

(6) Tolerance : $J = \pm 5\%$

Characteristics :

Electrical

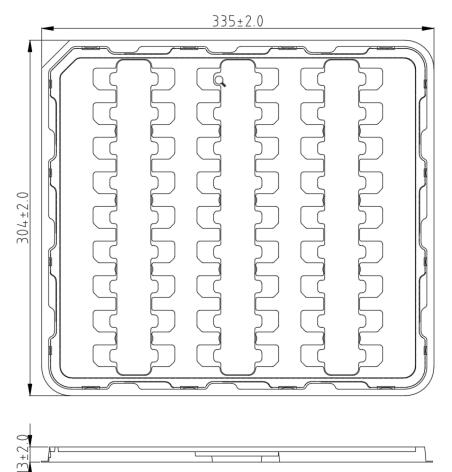
	-	
Item	Specification and Requirement	Test Method
Temperature Coefficient (TCR)	As follow specification	JIS-C-5201 +25°C/ +125°C.
Short Time Overload	$ riangle R:\pm$ 0.5% Without damage by flashover, spark, arcing, burning or breakdown	JIS-C-5201-1 4.13 5 x rated power for 5 seconds.
ESD	$\triangle R:\pm 1\%$	AEC-Q200-002 Human body, 8KV.

Mechanical

ltem	Specification and Requirement	Test Method
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder	J-STD-002 245 \pm 5°C for 12 \pm 0.5 seconds.
Resistance to Solder Heat	$\triangle R:\pm 0.5\%$	MIL-STD-202 Method 210 $260 \pm 5^{\circ}$ C for 10 ± 1 seconds.
Board Flex	$ riangle R:\pm$ 0.5% Without mechanical damage such as break.	AEC-Q200-005 Bending value: 2 mm for 60 ± 1 seconds
Vibration	△R: ± 0.5% Without distinct damage in appearance	MIL-STD-202 Method 204 5G's for 20 minutes, 12 cycles each of 3 orientations. Test from 10- 2000Hz.
Mechanical Shock	$ riangle { m R}:\pm$ 0.5% Without distinct damage in appearance	MIL-STD-202 Method 213 100G's peak value, 6ms, Half-sine waveform, 12.3ft/sec.

Endurance

Item	Specification and Requirement	Test Method
Temperature Cycling	△R:±0.5%	JESD22 Method JA-104 1000 cycles, (-55°C~150°C) 30 min maximum dwell time at each temperature.
Biased Humidity	$\triangle R: \pm 0.5\%$	MIL-STD-202 Method 103 1000 hours, 85°C/85%R.H, applied for 10% rated power.
Operational Life	△R: ± 1.0%	MIL-STD-202 Method 108 100% Rate power for 1,000 hours at terminal temperature 140°C.
High Temperature Store	△R: ± 1.0%	MIL-STD-202 Method 108 170°C for 1,000 hours.


Note : Measurement at 24±4 hours after test conclusion for all reliability tests-parts.

Packaging :

Tray packaging dimensions :

(Unit : mm)

Label Marking :

The following items shall be marked on tray

- (1) Description
- (2) Quantity
- (3) Part No.
- (4) Tapping No.

Quantity: 27 Pcs / Tray 135 Pcs / Carton

Care Note :

Care note for storage

- (1) Shunt sensor shall be stored in a environment where temperature and humidity must be controlled (temperature 5 to 35° C, humidity < 60% RH). However, the humidity should be maintained as low as possible.
- (2) Shunt sensor shall not be stored under direct sunlight.
- (3) Shunt sensor shall be stored in condition without moisture, dust, any material defect solderability, or hazardous gas (i.e. hydrogen chloride, sulfurous acid gas, and hydrogen sulfide)
- (4) The sensor can be stored for at least one year under the condition mentioned above.

Care note for operating and handling

- (1) Protect the edge and coating of the sensors from mechanical stress.
- (2) Avoid bending of printing circuit board (PCB) when cutting and fixing it on support body to reduce mechanical stress on sensors.
- (3) Sensor should be used within the condition of specification.

Note: When a voltage higher than specified value is loaded to the sensor, this may damage the sensor material due to temperature rise.

- (4) The loaded voltage should consult terminal temperature of the sensor according to the derating curve.
- (5) When applying a high current exceeding suggested specification (pulse current, shock current) to the sensor, it is necessary to re-evaluate the operating condition before using it in the system.